Example real-time power estimate
The ft_realtime_powerestimate function reads data in small chunks and performs a spectral estimation for each chunck. The output of this function is a constantly updating figure with the power spectrum, averaged over the selected channels.
Flowchart
Example use
The easiest way to try out the ft_realtime_powerestimate example is by starting two Matlab sessions. In the first session you create some random signal and write it to the buffer by means of ft_realtime_signalproxy:
cfg = []; cfg.channel = 1:10; % list with channel "names" cfg.blocksize = 1; % seconds cfg.fsample = 250; % sampling frequency, Hz cfg.lpfilter = 'yes'; % apply a low-pass filter cfg.lpfreq = 20; % filter frequency, Hz cfg.target.dataset = 'buffer://localhost:1972'; % where to write the data ft_realtime_signalproxy(cfg)
In the second Matlab session you start the ft_realtime_powerestimate and point it to the buffer:
cfg = []; cfg.blocksize = 1; % seconds cfg.foilim = [0 30]; % frequency-of-interest limits, Hz cfg.dataset = 'buffer://localhost:1972'; % where to read the data from ft_realtime_powerestimate(cfg)
After starting the ft_realtime_powerestimate, you should see a figure that updates itself every second. That figure contains the powerspectrum of the simulated random number signal. If you close the figure, the figure will re-appear and start all over again with the automatic scaling of the vertical axis.
You can also start the two Matlab sessions on two different computers, where on the second you would then point the reading function to the first computer.
Matlab code
function ft_realtime_powerestimate(cfg) % FT_REALTIME_POWERESTIMATE is an example realtime application for online % power estimation. It should work both for EEG and MEG. % % Use as % ft_realtime_powerestimate(cfg) % with the following configuration options % cfg.channel = cell-array, see FT_CHANNELSELECTION (default = 'all') % cfg.foilim = [Flow Fhigh] (default = [0 120]) % cfg.blocksize = number, size of the blocks/chuncks that are processed (default = 1 second) % cfg.bufferdata = whether to start on the 'first or 'last' data that is available (default = 'last') % % The source of the data is configured as % cfg.dataset = string % or alternatively to obtain more low-level control as % cfg.datafile = string % cfg.headerfile = string % cfg.eventfile = string % cfg.dataformat = string, default is determined automatic % cfg.headerformat = string, default is determined automatic % cfg.eventformat = string, default is determined automatic % % To stop the realtime function, you have to press Ctrl-C % Copyright (C) 2008, Robert Oostenveld % % Subversion does not use the Log keyword, use 'svn log <filename>' or 'svn -v log | less' to get detailled information % set the default configuration options if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % default is detected automatically if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end % default is detected automatically if ~isfield(cfg, 'eventformat'), cfg.eventformat = []; end % default is detected automatically if ~isfield(cfg, 'blocksize'), cfg.blocksize = 1; end % in seconds if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'foilim'), cfg.foilim = [0 120]; end if ~isfield(cfg, 'bufferdata'), cfg.bufferdata = 'last'; end % first or last % translate dataset into datafile+headerfile cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); cfg = ft_checkconfig(cfg, 'required', {'datafile' 'headerfile'}); % ensure that the persistent variables related to caching are cleared clear read_header % start by reading the header from the realtime buffer hdr = ft_read_header(cfg.headerfile, 'cache', true, 'retry', true); % define a subset of channels for reading cfg.channel = channelselection(cfg.channel, hdr.label); chanindx = match_str(hdr.label, cfg.channel); nchan = length(chanindx); if nchan==0 error('no channels were selected'); end % determine the size of blocks to process blocksize = round(cfg.blocksize * hdr.Fs); % this is used for scaling the figure powmax = 0; % set up the spectral estimator specest = spectrum.welch('Hamming', min(hdr.Fs, blocksize)); prevSample = 0; count = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this is the general BCI loop where realtime incoming data is handled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% while true % determine number of samples available in buffer hdr = ft_read_header(cfg.headerfile, 'cache', true); % see whether new samples are available newsamples = (hdr.nSamples*hdr.nTrials-prevSample); if newsamples>=blocksize % determine the samples to process if strcmp(cfg.bufferdata, 'last') begsample = hdr.nSamples*hdr.nTrials - blocksize + 1; endsample = hdr.nSamples*hdr.nTrials; elseif strcmp(cfg.bufferdata, 'first') begsample = prevSample+1; endsample = prevSample+blocksize ; else error('unsupported value for cfg.bufferdata'); end % remember up to where the data was read prevSample = endsample; count = count + 1; fprintf('processing segment %d from sample %d to %d\n', count, begsample, endsample); % read data segment from buffer dat = read_data(cfg.datafile, 'header', hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', false); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % from here onward it is specific to the power estimation from the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % put the data in a fieldtrip-like raw structure data.trial{1} = dat; data.time{1} = offset2time(begsample, hdr.Fs, endsample-begsample+1); data.label = hdr.label(chanindx); data.hdr = hdr; data.fsample = hdr.Fs; % apply preprocessing options data.trial{1} = ft_preproc_baselinecorrect(data.trial{1}); figure(1) h = get(gca, 'children'); hold on if ~isempty(h) % done on every iteration delete(h); end if isempty(h) % done only once powmax = 0; grid on end for i=1:nchan est = psd(specest, data.trial{1}(i,:), 'Fs', data.fsample); if i==1 pow = est.Data; else pow = pow + est.Data; end end pow = pow/nchan; powmax = max(max(pow), powmax); % this keeps a history plot(est.Frequencies, pow); axis([cfg.foilim(1) cfg.foilim(2) 0 powmax]); str = sprintf('time = %d s\n', round(mean(data.time{1}))); title(str); xlabel('frequency (Hz)'); ylabel('power'); % force Matlab to update the figure drawnow end % if enough new samples end % while true